Mebelgeometry.ru

Мебельная геометрия
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Паропроницаемость кирпича керамического

Таблица паропроницаемости основных материалов

Паропроницаемость материалов – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Дуб вдоль волокон

Дуб поперек волокон

Кирпич керамический пустотелый (брутто1000)

Кирпич керамический пустотелый (брутто1400)

Кирпич красный глиняный

Пенополистирол

ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ

ПЕНОПОЛИУРЕТАН

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости — это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость — это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение — это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение — это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость — это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой — разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция — это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции — это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Состав, производство и разновидности керамического кирпича

Изготовление данного вида строительного материала представляет собой сложный процесс, состоящий из нескольких этапов. В настоящее время применяются две технологии производства керамического кирпича.

1. Пластический метод предполагает формование блока из глиняной массы с содержанием воды порядка 17-30 %. Для реализации этого процесса используется ленточный пресс, затем кирпич сушится в специально оборудованной камере или под навесом. На последнем этапе производится его обжиг в печи или в туннелях, остывшие изделия помещаются на склад.

2. Технология полусухого прессования. Исходная масса при этом имеет влажность в пределах 8 -10 %. Процесс формования блока осуществляется путем прессования под высоким давлением до 15 МПа.

Производство кирпича осуществляется в строгом соответствии с национальными стандартами ГОСТ 7484-78 и ГОСТ 530-95. В процессе подготовки массы используются глинообрабатывающие машины вальцы, бегуны и глиномялки. Формование кирпича на современных предприятиях происходит на высокопроизводительных ленточных прессах. Однородная структура блоков и отсутствие пустот достигается за счет использования вибростендов.

Сушка сырого кирпича осуществляется камерным или туннельным способом. В первом случае партия изделий загружается в специально оборудованное помещение, где температура и влажность изменяются по заданному алгоритму. Во втором варианте вагонетки с сырцом последовательно проводятся через зоны с разными параметрами микроклимата.

Обжиг кирпича происходит в специальных печах при определенных условиях. Температурный режим подбирается в зависимости от состава сырья и его максимальные значения варьируются в пределах от 950 до 1050 °С. Время обжига подбирается с таким расчетом, чтобы по завершении процесса массовая часть стекловидной фазы в структуре кирпича достигала 8 – 10 %. Такой показатель обеспечивает максимальную механическую прочность изделию.

Читать еще:  Как закрепить стропила к кирпичной стене?

Сырьем для производства кирпича служит глина мелкой фракции, которая добывается в карьерах открытым способом с применением одноковшовых или роторных экскаваторов. Обеспечить надлежащее качество изделий возможно только при использовании материла с однородным составом минералов. Заводы для изготовления кирпича строятся вблизи месторождений для снижения транспортных расходов и надежного снабжения предприятия минеральным сырьем.

Основные виды кирпича керамического различаются по назначению и подразделяются на рядовой (другие названия: строительный или обычный) и лицевой.


Рядовой керамический кирпич.


Облицовочный керамический кирпич.

Лицевой в зависимости от технологического исполнения может быть нескольких типов:

  • фасадный;
  • глазурованный;
  • фасонный;
  • фигурный;
  • ангобированный.

Керамический кирпич, кроме того, может быть монолитным или пустотелым, а его поверхности ложковые и тычковые делаются гладкими или рифлеными. При этом изделия одного вида часто сочетают несколько признаков, так рядовой блок изготавливается полнотелым или с полостями. Кладка печей или каминов осуществляется из специального огнестойкого (шамотного) кирпича, а для мощения дорожек применяется его специальный вид – клинкерный.


Керамический кирпич и его структура.

Определить уровень проницаемости оборудования

Профессиональные строители имеют специальное оборудование для точного определения паропроницаемости определенных строительных материалов. Для расчета описанного параметра используется следующее оборудование:

  • весы с минимальной погрешностью;
  • посуда, необходимая для проведения экспериментов;

инструменты для точного определения толщины строительных материалов.Благодаря таким инструментам описанный атрибут точно определен. Но данные по экспериментальным результатам приведены в таблицах, поэтому нет необходимости определять паропроницаемость материала при строительстве объекта строительства.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Разбираемся с коэффициентом

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Создание комфортных условий

Для создания в жилище благоприятного микроклимата требуется принимать во внимание особенности используемого строительного сырья. Особый акцент следует сделать на паропроницаемости. Обладая знаниями об этой способности материала, можно корректно подобрать необходимое для строительства жилья сырье. Данные берутся из строительных норм и правил, например:

  • паропроницаемость бетона: 0,03 мг/(м*ч*Па);
  • паропроницаемость ДВП, ДСП: 0,12-0,24 мг/(м*ч*Па);
  • паропроницаемость фанеры: 0,02 мг/(м*ч*Па);
  • керамического кирпича: 0,14-0,17 мг/(м*ч*Па);
  • кирпича силикатного: 0,11 мг/(м*ч*Па);
  • рубероида: 0-0,001 мг/(м*ч*Па).

Образование пара в жилом доме может быть вызвано дыханием человека и животных, приготовлением еды, перепадом температур в ванной комнате и прочими факторами. Отсутствие вытяжной вентиляции также создаёт высокую степень влажности в помещении. В зимний период нередко можно замечать возникновение конденсата на окнах и на холодном трубопроводе. Это наглядный пример появления пара в жилых домах.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Читать еще:  Почему мокнет стена кирпичного дома внутри?

Размеры «теплой керамики»

Высота блоков всех типоразмеров всегда кратна кирпичной кладке. Поэтому можно легко адаптировать под теплую керамику любой проект кирпичного дома. Часто рядом с маркировкой изделий указан «эквивалент» в кирпичах. Так, крупный стеновой блок маркированный 510П+Г имеет габариты 510х240х215. Он один эквивалентен 15 штукам кирпича.

В длину (которая при кладке становится толщиной стены) пустотелые керамоблоки выпускаются трех основных размерных групп:

  • 380 мм;
  • 440 мм;
  • 510 мм.

Из них два последних типоразмера не нуждаются в утеплении. А блоки шириной 380 мм и меньше требуют утепления минеральной ватой (устройства обычной фасадной системы).

Также можно приобрести изделия длиной 250, 300, 100, 110 мм, которые используются для кладки перегородок и как доборные элементы. Выпускаются «половинки» и угловые элементы. Причем угол может быть как 90°, так и 135°, что удобно для реализации некоторых проектов. Есть в продаже стеновые блоки, которые при небольшом физическом воздействии правильно разделяются на мелкие доборные элементы.

Кирпич из теплой керамики бывает стандартного одинарного (НФ) 120*250*65, полуторного (1,5НФ) 120х250х88 или двойного размера (2НФ) 120х250х138. Он выпускается как ячеистым, как однородной поризованной структуры.

Экономия при кладке достигается не только экономичным использованием раствора, но и большими габаритами единиц при их малом весе. Например, блок имеет габариты 500х248х238 и массу 21 кг. Он заменяет собой 13,5 кирпичей весом 3,3 кг каждый. Выгода здесь очевидна: меньше раствора, меньше физической работы — выше скорость кладки.

Рациональная конструкция

Каждая кладочная единица «теплой керамики» имеет соединение «паз/гребень». Такая конструкция позволяет совсем не расходовать раствор на боковые швы. Он кладется только между рядами, что дает существенную экономию раствора. Эта технология поначалу была встречена отечественными строителями скептически: пазогребневой стык тщательно проверялся на теплопроводность. Но все исследования подтверждают заявленную производителями теплоемкость такой керамики. «Продуваемость» стены из керамических блоков полностью исключена, так как поверхность оштукатуривается изнутри и снаружи. Для удобства проведения штукатурных работ внутренняя поверхность керамоблоков имеет мелкие продольные пазы.

Сравнение с другими материалами

Чтобы принять решение о возможности использования определенного материала, может быть недостаточно одного рассмотрения минусов домов из теплой керамики. Поэтому мы сравним керамоблоки с другими популярными материалами и постараемся выявить лучший.

Теплая керамика и газобетон

Чтобы объективно назвать лучший материал, необходимо сравнить их основные технико-эксплуатационные характеристики:

  • Прочность. Керамоблоки являются более прочными, способными выдерживать большие нагрузки. Они могут выдержать давление до 15 Мпа, тогда как изделия из газобетона иногда повреждаются под давлением уже около 5 Мпа. Чтобы избежать растрескивания газобетона строители часто используют специальный армирующий пояс.
  • Морозостойкость. Если сравнить материалы по морозостойкости (количеству циклов, которые они могут выдержать) победителя выявить не удастся. Оба материала могут продержаться больше 50 циклов, однако нужно учитывать, что газобетон нуждается в более тщательной защите от влаги. Если в блоках будет какое-то количество воды, ее замерзание зимой может привести к преждевременному растрескиванию материала стен.
  • Теплоизоляция. По коэффициенту теплоизоляции газобетону почти нет равных: до 0,12 Вт/м*К. У керамических блоков показатели немного хуже: 0,15-0,28 Вт/м*К.
  • Звукоизоляция. По способности материала защищать внутренние помещения от постороннего шума керамоблоки и газобетон почти равны. Первые могут поглотить шум до 53 Дб, а второй — не более 45 Дб.
  • Сложность обработки. В отличие от теплой керамики, газобетон обрабатывается очень легко с использованием самых доступных материалов: обычная пила, дрель и т.д. Для резки керамоблока требуется болгарка с алмазным кругом, а проделать в нем штробы не удастся вовсе, так как это приведет к вскрытию внутренних пустот.
  • Стоимость. По цене газобетон тоже выигрывает у теплой керамики.
  • Общая долговечность. В Европе керамоблоки зачастую выбирают из-за очень продолжительных сроков эксплуатации материала. Дом из теплой керамики легко может простоять более 100 лет. Газобетон не столь долговечен, хотя и его сроки эксплуатации исчисляются многими десятилетиями. Единственная проблема — высокая влажность может сильно сократить срок службы газобетона.

В целом, оба материала отличаются прекрасными технико-эксплуатационными характеристиками, поэтому хорошо подходят для строительства частных домов. Они энергоэффективны, безопасны и долговечны.

По некоторым параметрам теплая керамика лучше, чем газобетон, зато второй больше подходит для малоэтажного строительства при ограниченности бюджета.

Читать еще:  Раствор для шамотного кирпича какой лучше?

Теплая керамика и кирпич

Второй строительный материал, с которым часто сравнивают теплую керамику — традиционный кирпич, столетиями успешно используемый для возведения самых разных сооружений.

Сравнение основных характеристик:

  • Состав материала. Кирпич и керамические блоки изготавливаются в первую очередь из глины, в которую для создания теплой керамики добавляют опилки, щепу или солому.
  • Размеры. Керамические блоки намного больше кирпича, поэтому строить дома из них быстрее, чем из традиционного кирпича. Однако это приводит к сложностям при создании сложных архитектурных форм, к примеру арок и карнизов.
  • Скорость постройки дома. Для возведения объекта одного и того же размера с использованием керамических блоков нужно затратить в 3-4 раза меньше времени, чем при использовании кирпича. Это делает использование теплой керамики более выгодной в экономическом плане, так как придется оплачивать меньше времени нанятых строителей.
  • Прочность. Кирпич считается более прочным материалом, чем керамические блоки. Класс прочности первого может достигать до М300, тогда как теплая керамика не прочнее М150. Эта разница важна только при строительстве многоэтажных сооружений, которым требуется класс прочности М200 и выше. Для строительства коттеджа надежности керамоблоков вполне достаточно.
  • Теплопроводность. По теплоизоляционным характеристикам теплая керамика выигрывает у кирпича: 0,15 Вт/м*С против 0,35–0,41 Вт/м*С для керамического и 0,81 Вт/м*С для силикатного кирпича.
  • Морозостойкость. По характеристикам морозостойкости керамические блоки и кирпич одинаковы, они способны выдержать примерно равное количество циклов замораживания/размораживания.

В итоге: кирпич — более подходящий материал для многоэтажного строительства. Если же нужно построить частный дом, керамические блоки предпочтительнее.

Характеристики поризованного кирпича

В продаже можно встретить материал разных размеров. Основные разновидности «теплой керамики» по габаритам:

  • одинарный – 25*12*6,5 см;
  • полуторный – 25*12*8,8 см;
  • двойной – 25*12*13,8 см;
  • строительный – 25*25*13,8 см;
  • крупноформатный поризованный 38*25,3*21,9 см;
  • крупноформатный сверхпоризованный 39,8*25,3*21,9 см.

Керамический блок крупноформатный Poromax-250

Размеры энергоэффективного кирпича намного больше обычных, что ускоряет время на выполнение кладки и снижает трудозатраты.

Важно! За счет значительных размеров можно строить толстые стены, ведь один ряд поризованного кирпича заменит два ряда стандартного.

В итоге стены будут немногослойными, в них не возникнет мостиков холода, и необходимость в применении утеплителя отпадет. Поризованная керамика различается также по маркам, которые обозначаются буквой «М» и отражают надежность при сжатии (от М-50 до М-200).

Возведение стены из теплой керамики

Количество пустот внутри блоков может быть различным: их доля составляет 14-35% от общего объема. Плотность материала небольшая (700-800 кг/м³), но остается достаточной для его пригодности в возведении несущих стен.

Прочие важные технические параметры керамики:

  1. Морозостойкость. Отражает количество циклов заморозки и размораживания, которые может выдержать продукция. Обычно у поризованной керамики этот показатель составляет 50 циклов. Это не значит, что через 50 лет дом рассыпется. Речь идет о полном промораживании блоков, что возможно только в неэксплуатируемом здании.
  2. Водопоглощение. По сравнению с обычной керамикой, теплый кирпич имеет несколько повышенный показатель водопоглощения (11-14%), это обусловлено его пористостью. Проблемы могут начаться только при полном погружении материала в воду, что в стандартных условиях почти не наблюдается. Для защиты кирпича можно использовать его наружную облицовку, а внутри влажных помещений (бань, бассейнов) обустраивать пароизоляцию.
  3. Теплопроводность. Ее можно назвать уникальной (0,08-0,2 Вт/м²). Эффективность таких блоков на порядок выше, а теплопотери – в 2-3 раза ниже, чем у домов из полнотелого кирпича и монолитного бетона. Поризованная керамика обладает отличной аккумулирующей способностью и естественным образом производит терморегуляцию воздуха в жилье.

Профессиональные строители считают поризованные блоки довольно хрупкими и проблемными в перевозке. Действительно, для них требуются хорошо продуманные условия упаковки поддонов, транспортировки, погрузки и разгрузки. Тем не менее высококачественная продукция крепкая и надежная, и все требования к ней вполне выполнимы.

Стоимость

Она отличается в зависимости от выбранной разновидности кирпича. Ориентировочно полнотелый вариант стоит 8 рублей за 1 штуку, пустотелый-9 руб./шт., облицовочный начиная от 10 рублей и выше.

Решившись построить дом, и предварительно составив смету, можно определить для себя обязательные траты. Но на красоте и качестве будущего жилища не стоит экономить, ведь это строение должно будет служить и радовать своим внешним видом не один десяток лет. С помощью керамического кирпича можно не только возвести стены, но и облицевать их с внешней стороны. Работая с ним можно решить самые смелые архитектурные идеи и восстановить разрушенные части зданий.

Видео сравнение кирпичей:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector