Mebelgeometry.ru

Мебельная геометрия
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Несущая способность перекрытия из бетона

Самостоятельный расчет плиты перекрытия: считаем нагрузку и подбираем параметры будущей плиты

Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить такие важные параметры, как сечение арматуры и площадь нагрузки.

В этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!

Особенности конструкций

Прежде чем купить железобетонную, рекомендуется выяснить несущую способность перекрытия и ее размеры. Изготавливаются данные изделия из тяжелого силикатного бетона либо легкого конструкционного бетона плотной структуры.

В зависимости от того, как армируются перекрытия, данные конструкции применяются в различных целях. К примеру, для возведения различных сооружений. От их схемы отпирания и веса зависит устойчивость объекта. В любом случае их формы и размеры определяются чертежами, разработанными для данных изделий.

Специалисты выделяют два класса перекрытий, которые отличаются между собой:

  • по относительной толщине изделия;
  • методом стыковки с несущими конструкциями возводимых объектов.

При производстве железобетонных изделий данного типа применяется бетон не меньше класса В15. Плита армируется обычным металлом или предварительно напряженной арматурой. Кроме несущей способности перекрытий, подобные железобетонные изделия обладают звукоизоляцией. Чтобы улучшить данные свойства и уменьшить вес, изделия делают с пустотами, включая легкий бетон с пористым наполнителем.

Определение требуемой толщины монолитного перекрытия

Для изгибаемых плитных элементов, за десятилетия опыта применения железобетонных конструкций, опытным путем определено значение – отношения толщины к пролету. Для плит перекрытия оно составляет 1/30. То есть при пролете 6м оптимальная толщина составит 200мм, для 4,5мм – 150мм.

Занижение или наоборот, увеличение принимаемой толщины возможно исходя из требуемых нагрузок на перекрытие. При низких нагрузках (к нему относится частное строительство) возможно уменьшение толщины на 10-15%.

Формулы и примеры

Основанием для расчета монолитной плиты перекрытия являются СНиП No 52-01, изданный в 2003 году и СП No 52-101, также изданный в 2003 году. В этих государственных актах изложены все требования к железобетонным и бетонным конструкциям.

В качестве примера расчета предлагается рассмотреть квадратную монолитную плиту, устанавливаемую на несущие стены по всему контуру.

Исходные данные:

  • стены изготовлены из традиционного кирпича, 510 мм;
  • план помещения, 5.1х5.1 м;
  • опирание МПП, 250 мм;
  • полные габариты МПП, 5.6х5.6 м;
  • расчетный пролет: l1 = l2 = 5.1 м;
  • бетон В-20, сопротивление на сжатие Rб = 11.51 МПa = 117.1 кгс/см 2 и плотностью 2300 кг/м 3 ;
  • арматура кл. AIII, сопротивление на растяжение Rs = 356 МПa =3610 кгс/см 2 .

Поскольку, согласно строительным нормам нормативные нагрузки от расположенных выше стройконструкций на проектируемое перекрытие для жилых помещений принимают в диапазоне от 200 до 800 кг/м 2 , специалисты рекомендуют в качестве распределенной нагрузки для перекрытия жилого дома выбрать qвр = 400 кг/м 2 . Как правило, она учитывает среднестатистические нагрузки жилых помещений: стяжка пола, мебель, бытовое оборудование и вес жильцов.

Такую нагрузку условно считают временной, поскольку в будущем возможны перепланировки и ремонты, которые могут повлиять на ее итоговый размер. Поскольку высота перекрытия в начале расчетов неизвестна, допускается ее принимать предварительно, с учетом среднестатистических показателей h = 17 см, тогда собственная нагрузка МПП рассчитывается:

Этот показатель приблизительный, вследствие того, что истинный вес 1 м 2 ЖБ перекрытия на самом деле зависит не только от объема арматуры и Д прутков, но также и от объема и размера фракций бетонных наполнителей, уровня их уплотнения и прочих факторов. Представленная нагрузка считается постоянной.

Отсюда следует, что общая распределенная нагрузка на перекрытие будет составлять:

q = qмпп + qвр = 391 +400 = 791 кг/м 2

Параметры толщины плиты

Для монолитных перекрытий противодействие железобетона растяжению по существу равняется «0». Подобный вывод следует из анализа и сравнения напряжений на растяжение, которые конкретно испытывают составляющие плиты: бетон и арматура.

Различие между ними достигает существенное, что говорит о том, что практически полную нагрузку принимает на себя армокаркас. А вот нагрузки на сжатие ведут себя по иному — эти силы распределены равномерно вдоль вектора силы. Поэтому в результате, такое сопротивление берется по расчетному показателю.

СНиП требует, чтобы толщина плиты была взаимосвязана с размером пролета, установив предельное соотношение 1:30. За размер пролета неизменно принимается протяжённость наиболее длинной стены. В нашем случае помещение квадратное, все стены равны 5.1 м.

Расчет толщина монолитного перекрытия:

5.1х30х0,1= будет 15.3 см.

Результат ниже предварительно принятой в расчетах толщины 17 см, поэтому у расчетной плиты перекрытия будет запас прочности. Частному застройщику лучше принимать плиту перекрытия с запасом.

Специалисты не советуют частникам проектировать огромные помещения и пролеты, поскольку толщина МПП не может превосходить предельный нормативный показатель 25 см.

Максимальный изгибающий момент

Нахождение наибольшего изгибающего момента зависит от схемы опирания перекрытий. Когда МПП лежит на 2-х несущих стенках, ее можно приравнивать к балке на 2-х шарнирных опорах, для простоты подсчетов ширина такой балки принимается равной 1.0 м.


В нашем примере перекрытие опирается на 4-е несущие стенки оценивать поперечное сечение только в отношении оси X недостаточно, поскольку сжимающие/растягивающие напряжения образуются в 2-х плоскостях Х и Z.

Расчет относительно оси Х пролета — l1 заключается в установлении изгибающего момента М1:

Поскольку пролеты равны, изгибающий момент м 2 по оси Z будет равен М1

При расчетной нагрузке q = q1 + q2 и плите в форме квадрата, можно определить, что q1 = q2 = 0.5q в таком случае моменты будут равны

М1 = м 2 = q1 l12 /8 = q l12 /16 = q l22 /16

Из этого можно сделать вывод, что арматурные прутья, укладываемые параллельно осям Х и Z, можно рассчитать на равнозначный изгибающий момент, он будет ниже в два раза, чем для перекрытий, опирающихся на 2 несущие стенки.

Наибольший изгибающий момент для арматурных стержней:

Мар = 791 х 5.12/16 = 1285.86 кгс·м.

Данный показатель момента допускается применять исключительно для определения характеристик арматурного каркаса. Поскольку на бетон воздействуют сжимающие напряжения в 2-х перпендикулярных площадях, поэтому это показатель для бетона необходимо брать больше:

Мбет = (м 2 1 + м 2 2)0.5 = Mар√2 = 1285.86·1.4140 = 1818.21 кгс·м.

Далее можно найти среднее значение между двумя моментами:

Читать еще:  Как перекрыть крышу бикростом?

М = (Мар + Мбет)/2 = (1285,86+1818,21)/2 =1552,035 кгс·м.

Для того чтобы выбрать арматуру, предварительно принимают высоты осей:

  • h01 = 135 мм;
  • h02 = 114 мм.

Базовая формула для расчета:

После подставления данных, получают:

  • А01 = 0.0745
  • А02= 0.104

Полученные данные применяют для табличного определения η и ξ.


Найденные табличные данные подставляют в выражение:

  • Faр1 = 3,275 см 2 .
  • Faр2 = 3,6 см 2 .

По данным расчетам получают результат армирования МПП с помощью 5 арматур для установки продольно/поперечно с шагом 200 мм.


Например, для 5-ти прутьев Д=10 мм F сечения, будет равна 3,93 см 2, а для 1 м.п она станет — 7,86 см 2 .

Таким образом, очевидно, что F арматуры вверху армокаркаса получено с запасом. Также можно пересчитать количество стержней, например, уменьшить их до 4-х.

О расчета монолитного перекрытия на изгиб рассказано в видео:

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м 2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Обследование и расчёт монолитной железобетонной плиты перекрытия

Цель выполнения настоящего расчета — определение фактической несущей способности монолитной железобетонной плиты перекрытия подвала над комнатой отдыха жилого дома.

При расчете учитывались следующие исходные данные и предпосылки:

— со слов Заказчика, плита перекрытия армировалась и бетонировалась как единая конструкция сразу над всем подвалом. Однако, поскольку наверняка установить факт наличия правильного армирования плиты над опорой (средней стеной) на настоящий момент невозможно, расчет плиты перекрытия выполнен без учета ее неразрезности, что идет в запас прочности, поскольку фактические изгибающие моменты, действующие в пролете плиты будут ниже;
— по результатам осмотра жилого дома, монолитная железобетонная плита перекрытия подвала выполнена опертой на стены подвала по контуру. Однако, участок плиты перекрытия над комнатой отдыха условно рассчитывался как балка шириной 1,0 м на двух опорах (продольных стенах помещения), как худший случай работы плиты;
— расчетный пролет: расстояние в свету между продольными стенами помещения составляет 5130 мм (см. схему на рис. 1). Опирание плиты перекрытия выполнена на всю толщину стен здания.

Расчетный пролет, на который выполнялись дальнейшие вычисления принят равным 5,4 м;
— толщина плиты перекрытия: 200 мм;
— материал плиты перекрытия: бетон, по результатам выполненных испытаний, бетон плиты перекрытия соответствует классу В25, Rb = 14,5 МПа.
— рабочая арматура плиты перекрытия: армирование плиты перекрытия, расстояние между стержнями и величина защитного слоя бетона принималось со слов Заказчика, а также по результатам определения шага и защитного слоя бетона неразрушающим методом. Армирование выполнено из стержней периодического профиля диаметром 12 мм, уложенных в двух направлениях с размером ячейки 200х200 мм в два слоя (около нижней и верхней зоны плиты). Для расчета принято армирование из ф12 А400, шаг стержней 200 мм, As = 565 мм2, Rs = 350 МПа. Расстояние от нижней грани плиты перекрытия до центра тяжести нижней рабочей арматуры: принято по результатам определения армирования неразрушающими методами а = 38 мм. Расстояние от верхней грани плиты перекрытия до центра тяжести верхней арматуры принято аналогичным нижней арматуре;
— при расчете плиты перекрытия учитывались нагрузки от следующих слоев: цементно-песчаная стяжка толщиной 100 мм, фактически выполненная на момент расчета, покрытие пола из керамогранита (на момент выполнения расчета не выполнено, принято со слов Заказчика), также учтена отделка потолка в виде штукатурного слоя из цементно-песчаного раствора толщиной 30 мм, как наиболее тяжелый возможный вид отделки. Полезная нагрузка и коэффициенты надежности по нагрузке принимались по СП 20.13330.2016 «Нагрузки и воздействия» (актуализированная редак-ция СНиП 2.01.07-85*).

Расчет монолитной железобетонной плиты

Вывод по результатам расчета

При расчете монолитной железобетонной плиты перекрытия подвала над комнатой отдыха на принятую нагрузку, расчетные изгибающие моменты превышают предельный момент, который может быть воспринят сечением плиты.

Рекомендации по дальнейшей эксплуатации плиты перекрытия подвала

Поскольку при выполнении расчета выявлено превышение расчетных изгибающих моментов, действующих в плите перекрытия на рассчитанном участке предельного момента, который может быть воспринят сечением плиты, рекомендуется выполнить одно из следующих мероприятий:

  • возведение несущей стены под плитой перекрытия в середине пролета (или по возможно-сти ближе к середине пролета), при этом обеспечить передачу нагрузки от плиты перекрытия на эту стену;
  • подведение разгружающей балки (балок) под плиту перекрытия, при этом необходимо обеспечить включение этих балок в работу;
  • усиление плиты перекрытиядругим способом (например — устройство дополнительного армирования снизу плиты с последующим обетонированием и др.).

При выборе конкретного способа усиления плиты перекрытия подвала необходимо предварительно проверить принятое решение расчетом.

Виды и особенности пустотных плит

Многопустотные ЖБИ для горизонтальных ограждающих и несущих конструкций по технологии производства бывают такого типа:

  • ПК – характеризуется применением опалубочного метода формования, при котором заливка бетона осуществляется в специальные формы, имеющие стандартные размеры.
  • ПБ – применяется методика непрерывного безопалубочного формования, при котором получается плита-полуфабрикат большой длины, разрезаемая на элементы заданных габаритов после того, как бетон наберет необходимую прочность.

По толщине ЖБИ подразделяются на такие разновидности:

  • Стандартные — ПК и ПБ с толщиной 220 мм.
  • Облегченные ПНО (производство осуществляется по опалубочной технологии), 1,6ПБ и 3,1ПБ (производятся по современному безопалубочному методу) с толщиной 160 мм.

Друг от друга плиты ПК и ПБ отличаются такими аспектами:

  • Внутреннее армирование – благодаря конструкции армирующего каркаса в изготовленных безопалубочным методом изделиях оказывает возможным резание их под углом от 0 до 180°. Однако лучше всего, если данная процедура будет осуществляться в заводских условиях. Противопоказано разрезание ПК, так как это может стать причиной нарушения несущей способности плиты.
  • Конфигурация продольных технологических отверстий – выполненные по опалубочной технологии изделия характеризуются большими и круглыми пустотами, что делает возможным прокладку инженерных коммуникаций внутри них (например, канализационных стояков).
  • Качество поверхности – благодаря новой технологии изготовления плиты ПБ обладают идеальной геометрией и более качественной поверхностью без сколов и наплывов. Кроме того, можно позволяет сэкономить на последующих отделочных работах.

Обследование и определение несущей способности плиты перекрытия

Содержание

  1. Введение
  2. Результаты исследований
  3. Результаты исследования покрытия над подвалом в осях 2С-4С
  4. Выводы
  5. Заключение

Введение

Основание для проведения обследования.

Время проведения обследования.

Читать еще:  Толщина перекрытия в монолитном многоэтажном доме

Работы по инженерно-техническому обследованию произведены в марте 2019г.

Монолитное железобетонное перекрытие жилого здания.

Элементы, подлежащие обследованию.

Согласно техническому заданию, выполнялось визуальное и детальное (инструментальное) обследование. Объектами технического обследования являлись:

Целями обследования являются:

Выполненный комплекс работ.

По результатам обследования составлено заключение о техническом состоянии несущих конструкций покрытия здания, включающее в себя:

  • техническую характеристику объекта обследования;
  • результаты обследования;
  • выводы по результатам обследования;
  • материалы фотофиксации;
  • поверочные расчеты;
  • графические материалы;

Инструментальное обеспечение обследования, методика проведения испытаний.

Съемка геометрических параметров и прочностных характеристик конструкций выполнена приборами:

Использованная при обследовании проектная, исполнительная, эксплуатационная и другая документация.

Проектная документация для проведения обследования не предоставлена.

Все работы выполнены в соответствии с ГОСТ Р 31937-2011 «Здания и сооружения. Правила обследования и мониторинга технического состояния» и СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений».

Классификация технического состояния конструкций приведена в соответствии с ГОСТ Р 31937-2011 , для оценки технического состояния предусмотрено четыре категории, характеризующие состояние конструкций здания:

Нормативное техническое состояние: Категория технического состояния, при котором количественные и качественные значения параметров всех критериев оценки технического состояния строительных конструкций зданий и сооружений, включая состояние грунтов основания, соответствуют установленным в проектной документации значениям, с учетом пределов их изменения.

Работоспособное техническое состояние: Категория технического состояния, при которой некоторые из числа оцениваемых контролируемых параметров не отвечают требованиям проекта или норм, но имеющиеся нарушения требований в конкретных условиях эксплуатации не приводят к нарушению работоспособности, и необходимая несущая способность конструкций и грунтов основания, с учетом влияния имеющихся дефектов и повреждений, обеспечивается.

Ограниченно-работоспособное техническое состояние: Категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, при которой имеются крены, дефекты и повреждения, приведшие к снижению несущей способности, но отсутствует опасность внезапного разрушения, потери устойчивости или опрокидывания, и функционирование конструкций и эксплуатация здания или сооружения возможны либо при контроле (мониторинге) технического состояния, либо при проведении необходимых мероприятий по восстановлению или усилению конструкций и (или) грунтов основания и последующем мониторинге технического состояния (при необходимости).

Аварийное состояние: Категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, характеризующаяся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности обрушения и (или) характеризующаяся кренами, которые могут вызвать потерю устойчивости объекта.

Результаты исследований

Результаты исследования покрытия над подвалом в осях 2С-4С

1. Конструкция перекрытия.

В габаритах обследования (в осях 2С-4С) перекрытие монолитное железобетонное, выполнено по двухпролетной конструктивной схеме, с защемлёнными узлами соединения с продольными и поперечными стенами. Плита опирается на стены, образуя ячейки с длиной плиты вдоль внутренних стен 7,490-7,547м и вдоль наружных стен 3,332-3,334м. Толщина плиты 230мм.

По результатам проведённых инструментальных исследований установлено, что рабочее армирование плиты выполнено из продольных стержней диаметром 10мм, уложенных перпендикулярно, в двух направлениях, образуя сетку с ячейкой 200х200мм, по нижнему контуру армирования плиты. Величина защитного слоя бетона 30мм. В опорных узлах над основной арматурой уложены дополнительные стержни диаметром 10мм.

2. Описание материалов: класс бетона, вид кирпича, вид и форма камня, вид раствора, вид крупного заполнителя в бетоне и т.д.

Бетон – тяжёлый на гранитном щебне.

Прочность бетона соответствует классу В22,5.

3. Техническое состояние и дефекты, выявленные при обследовании.

Техническое состояние плит перекрытия соответствует работоспособному состоянию.

Выводы

В результате проведённого детального визуально – инструментального обследования технического состояния плит перекрытия над подвалом, жилого здания, расположенного по адресу: . можно сделать следующие выводы:

  1. Существующее перекрытие монолитное железобетонное, толщиной 230мм. Плита опирается на внутренние поперечные и наружные стены с защемленными соединением со стенами в опорных узлах. По результатам проведенных инструментальных исследований установлено, что рабочее армирование плиты выполнено из продольных стержней диаметром 10мм, уложенных перпендикулярно в двух направлениях, образуя сетку с ячейкой 200х200мм, по нижнему контуру армирования плиты. Величина защитного слоя бетона 30мм. В опорных узлах над основной арматурой уложены дополнительные стержни диаметром 10мм. Прочность бетона соответствует классу В22,5.
  2. Техническое состояние плит покрытия соответствует работоспособному состоянию. Критических дефектов не зафиксировано.
  3. По результатам поверочного расчета установлено, что нагрузка, при которой будет происходить трещинообразование в плите, будет равна 2,498т/м2, что выше расчетной эксплуатационной нагрузки 1,451т/м2 на 1,047т/м2. Расчетная временная нагрузка на плиту принята в расчете, в соответствии с СП 20.13330.2011, — 0,6т/м2.

Максимально допустимая нагрузка, с учётом коэффициента запаса прочности, будет равна 2,498/1,5 = 1,665-0,7759 = 0,89т/м2.

Узел сопряжения плиты с наружной стеной

Заключение

1. На основании проведённого обследования можно сделать вывод о работоспособном техническом состоянии плиты покрытия.

2. Несущая способность железобетонной плиты достаточна для устройства в помещении №1 архива и в помещении №2 операционной кассы.

Определение прочности бетона плиты

Преимущества перекрытия с профнастилом

Применение профлиста (марка «Н») решает задачи строительства благодаря легкости, жесткости, прочности и коррозионной стойкости. Материал в профиль — волна, формирующая ребра жесткости, которые после отливки бетонной плиты повышают ее несущую способность и конструкции в целом. Лист является несъемной опалубкой, поэтому снижаются расходы арматуры и бетона.

Если он связывается с бетоном, снимает на себя часть нагрузки с плиты перекрытия. Такие монолитные элементы могут опираться на легкий несущий каркас, что удешевляет формирование фундаментов (достаточно столбчатого варианта) строений. Снижаются расходы на стеновые материалы — применяются легкие и теплые газоблоки и пеноблоки. Бетонный раствор заливается на профнастил, не требующий сложной опалубки.

При правильном уходе бетонная плита имеет высокие прочностные показатели, эффективно противостоит воздействию природных условий. Подобные железобетонные плиты имеют сниженную массу. Потолочная поверхность конструкций имеет готовый экстерьер, устойчивый к изменениям температурно-влажностного режима и действию огня. Материал опорной основы удобно транспортировать, он неприхотлив в эксплуатации и рассчитан на длительный период применения. На несущем каркасе профилированный лист монтируется просто, быстро, без применения грузоподъемной техники.

Расшифровка маркировки

Основные параметры изделия наносятся производителем на боковую поверхность плиты с помощью буквенно-цифрового кода. Полная маркировка изделия обязательно отображается в предоставляемых производителем сертификате качества на изделие. Потребитель может самостоятельно расшифровать маркировку, используя следующие примеры:

    ПК 72-12-8- АтVт: П – пустотелая плита; К – пустоты круглые в сечении; 72 – длина изделия в дециметрах (7,2м); 12 – ширина изделия в дециметрах (1,2м); 8 — допустимая нагрузка в кПа (800кгс/м²); АтV — применённый в изделии класс арматуры; т – в производстве плиты использован тяжёлый бетон.

Читать еще:  Расстояние между пустотами в плите перекрытия

Несущая способность зданий и сооружений

Существуют разные способы оценки несущей способности. Некоторые из них универсальные и подходят для объектов любого функционального профиля, другие применимы только к определенной категории сооружений.

Одна из методик оценки несущей способности позволяет достаточно точно определить остаточный ресурсный потенциал конструктивных элементов. Она подразумевает учет всех негативных факторов, которые могут вызвать износ сооружения: атмосферных осадков, перепадов температуры и влажности, ветра, особенностей рельефа, интенсивной или небрежной эксплуатации, коррозии, эрозии.

Проверка несущей способности традиционными способами используется уже достаточно давно. Стандартные методы подразумевают создание вибрационных динамических и механических импульсных воздействий определенной интенсивности и силы. Их направляют на отдельные элементы здания через грунт и фундамент. Для регистрации изменений на исследуемый объект устанавливают специальные датчики. После проведения испытаний полученные результаты обрабатывают в специальной компьютерной программе, которая позволяет рассчитать, чему равна текущая несущая способность зданий и сооружений.

Одна из особенностей методики оценки возможных дополнительных нагрузок: необходимо учитывать давление не только на один участок, но и на всю армированную конструкцию. Специалист должен выполнить пространственный расчет, который охватывает все взаимосвязанные элементы. Конструктивная оценка предполагает учет нагрузок дополнительного воздействия, временных, динамических, естественных и постоянных факторов. Такой комплексный подход считается наиболее полным и достоверным. Методика позволяет увидеть фактическую картину и спрогнозировать возможность увеличения нагрузки на здание без негативных последствий.

Несущая способность кирпичной кладки

Простенки кладки из кирпича выполняют роль несущих элементов сооружения. Прочностные показатели конструкции могут со временем снижаться из-за влияния внешних негативных факторов.

Для определения фактической несущей способности специалисты измеряют, рассчитывают и изучают следующие показатели:

  • сечение стены с отделкой;
  • высота стены;
  • ширина стены;
  • тип, марка и состав кирпича;
  • марка, состав и другие особенности раствора;
  • прочность кирпича и раствора в кладке.

Прочность кладки можно определить методами неразрушающего контроля. После получения необходимых вводных данных несущую способность рассчитывают по формуле. Она требуют применения некоторых коэффициентов – длительной нагрузки и продольного изгиба.

Оценка несущей способности бетонных и железобетонных конструкций

Для определения несущей способности конструктивных элементов из бетона и железобетона, которые имеют нормальное по отношению к продольной оси сечение, применяют методику предельного равновесия по нормативной документации. В этом случае руководствуются следующими упрощающими принципами:

  • игнорируют сопротивление бетона растяжению;
  • сжимающие напряжение в бетоне равны между собой;
  • растягивающие напряжение в арматуре не больше расчетных сопротивлений.

Для повышения прочностных характеристик в конструктивные элементы включают вкладыши из цементного бетона или другого низкодеформируемого материала, внутри которого расположены металлические элементы.

Особенности расчета несущей способности фундамента

Для грунта и фундамента максимально допустимую нагрузку исследуют в единой связке. Для укрепления слабого основания потребуются сваи. На грунте с плотной и устойчивой структурой можно использовать колонны или ленточный фундамент для стен. Для выбора оптимального варианта необходимо изучить в лаборатории физико-химические параметры почвы в данной местности.

Несущая способность фундамента во многом зависит от количественных и качественных свойств материала, наличия дефектов, арматуры, соответствия фактических и проектных данных. Любые негативные изменения в состоянии основания здания через некоторое время отразятся на стенах, перекрытиях и других верхних конструктивных элементах.

Изучение несущей способности основания требуется в следующих случаях:

  • Объект строится или возведен в сейсмически активном районе.
  • На основание воздействуют серьезные по силе горизонтальные нагрузки: фундаменты распорных конструктивных элементов, подпорные стены.
  • Объект возведен на откосе или недалеко от него.
  • Основание состоит из биогенных и пылевато-глинистых грунтов, насыщенных водой.
  • Основание сложено из гранита, песка и глины, которые отталкивают воду.

Несущая способность фундамента должна предотвращать вероятность сдвигов и обеспечивать высокую устойчивость и прочность оснований здания.

Несущая способность сваи указывает, какую нагрузку она способна выдержать при максимально допустимом уровне деформации грунта. Задача специалиста на стадии проектирования – рассчитать оптимальное число элементов.

Для оценки показателя используют два основных метода: уровень сопротивления по боковой поверхности и уровень сопротивления грунта под острием. Оптимальный вариант определяют исходя из характеристик почвы.

Особенности определения несущей способности вертикальных и горизонтальных конструктивных элементов

К перекрытиям относятся плиты, диски и балки. Они взаимосвязаны и объединены для выполнения единой функции. Перекрытие – это конструктивный элемент, расположенный между этажами. Он опирается на балку.

Расчет максимально допустимой нагрузки на перекрытие начинается с визуального осмотра. Инженер должен зафиксировать дефекты и особенности конструктивных элементов, выполняющих роль опоры.

Различают два типа несущих частей здания:

  1. Горизонтальные: балки, диски, плиты. На них приходится наибольшая нагрузка.
  2. Вертикальные: колонны, стены, столбы.

Балки – важный опорный элемент в зданиях с колоннами. Для их изготовления используют бетон. В старых домах встречаются балки из деревянных лагов, железных элементов и асфальтобетона. В этом случае специалист должен изучить состав балки, выяснить фактическую несущую способность, и насколько она изменилась со временем.

При проектировании инженеры должны закладывать несущую способность с некоторым запасом. Это помогает минимизировать вероятность перегрузки, но не отменяет необходимость в регулярных технических обследованиях здания.

К вертикальных несущим конструкция относятся столбы и колонны, имеющие отдельный фундамент, который по форме напоминает подстаканник. Чем больше нагрузка и площадь объекта, тем глубже должны быть заложены опорные элементы. Колонны обычно изготавливают из монолита или железобетона. Распространенный материал для возведения столбов – кирпич и камень. Эта вертикальная несущая конструкция встречается в старых малоэтажных домах.

Несущая способность кровли и фасада

Основная нагрузка на кровлю – это снег, ветер и другие погодные факторы. Если на стадии проектирования кровлю не планировалось эксплуатировать, то ее несущая способность снаружи будет ниже, чем с внутренней стороны.

Фасад может быть несущим и не несущим элементом сооружения. Его навешивают на колонны или устанавливают на отдельный элемент. В последнем случае фасад называют самонесущим.

Несущая способность объекта – изменяющаяся во времени величина. С увеличением срока эксплуатации и при воздействии агрессивных внешних факторов прочностные характеристики и устойчивость сооружения снижается. Предотвратить аварии и другие нежелательные ситуации на объекте поможет регулярное экспертное обследование.

Компания «Департамент» предлагает услуги по диагностике и определению несущей способности здания. Специалисты используют современное оборудование и методы неразрушающего контроля, которые позволяют максимально быстро получить достоверные результаты. Узнать подробности, стоимость и задать вопросы можно представителю компании «Департамент» по телефону или электронной почте.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector